We prove a Central Limit Theorem for the empirical optimal transport cost, $\sqrt{\frac{nm}{n+m}}\{\mathcal{T}_c(P_n,Q_m)-\mathcal{T}_c(P,Q)\}$, in the semi discrete case, i.e when the distribution $P$ is supported in $N$ points, but without assumptions on $Q$. We show that the asymptotic distribution is the supremun of a centered Gaussian process, which is Gaussian under some additional conditions on the probability $Q$ and on the cost. Such results imply the central limit theorem for the $p$-Wassertein distance, for $p\geq 1$. This means that, for fixed $N$, the curse of dimensionality is avoided. To better understand the influence of such $N$, we provide bounds of $E|\mathcal{W}_1(P,Q_m)-\mathcal{W}_1(P,Q)|$ depending on $m$ and $N$. Finally, the semidiscrete framework provides a control on the second derivative of the dual formulation, which yields the first central limit theorem for the optimal transport potentials. The results are supported by simulations that help to visualize the given limits and bounds. We analyse also the cases where classical bootstrap works.
翻译:在半离散的案例中,即分配美元以美元表示支持美元,但没有对美元作假设,我们证明对实验性最佳运输成本的中央限值。我们证明,在半离散的情况下,即分配美元以美元表示支持美元,但没有对美元作假设。我们显示,无症状分配是一个核心的Gaussian过程的顶点,这是Gaussian过程的顶点,在美元概率和成本的某些附加条件下,Gaussian为美元。这些结果意味着美元-Wassertein距离的中央限值,即美元-Wassertein距离的中央限值。这意味着,对于固定美元以美元表示支持美元分配,但是没有以美元作假设。为了更好地了解这种美元的影响,我们提供了以美元为核心的Gaussian过程的顶点,这是Gausian过程,这是在美元和成本上的一些附加条件。这些结果意味着美元-Wserformals 的中央控制框架以美元和美元为最低货币值。