Bayesian methods have been widely used in the last two decades to infer statistical properties of spatially variable coefficients in partial differential equations from measurements of the solutions of these equations. Yet, in many cases the number of variables used to parameterize these coefficients is large, and obtaining meaningful statistics of their values is difficult using simple sampling methods such as the basic Metropolis-Hastings (MH) algorithm -- in particular if the inverse problem is ill-conditioned or ill-posed. As a consequence, many advanced sampling methods have been described in the literature that converge faster than MH, for example by exploiting hierarchies of statistical models or hierarchies of discretizations of the underlying differential equation. At the same time, it remains difficult for the reader of the literature to quantify the advantages of these algorithms because there is no commonly used benchmark. This paper presents a benchmark for the Bayesian inversion of inverse problems -- namely, the determination of a spatially-variable coefficient, discretized by 64 values, in a Poisson equation, based on point measurements of the solution -- that fills the gap between widely used simple test cases (such as superpositions of Gaussians) and real applications that are difficult to replicate for developers of sampling algorithms. We provide a complete description of the test case, and provide an open source implementation that can serve as the basis for further experiments. We have also computed $2\times 10^{11}$ samples, at a cost of some 30 CPU years, of the posterior probability distribution from which we have generated detailed and accurate statistics against which other sampling algorithms can be tested.


翻译:在过去20年中,贝叶斯方法被广泛用于推断从这些方程式的解决方案测量中,部分差异方程式中空间可变系数的统计特性。然而,在许多情况下,用于参数化这些系数的变量数量很大,而且很难使用诸如基本大都会-哈斯廷(MH)算法等简单抽样方法来量化这些系数的优点,特别是如果反向问题条件不完善或不正确。结果,许多高级抽样方法在比MH更快的文献中被描述,例如利用统计模型的准确等级或基础差异方程式离散的等级。 11 同时,由于没有常用的基准,文献的读者很难用这些参数来量化这些算法的优点。 本文为巴伊西亚人反向反向问题 -- 即确定空间可变系数,以64种离散值,在Poisson方程式中,根据对解决方案的点测量,利用统计模型的准确等级或对基础差分级值的等级。 11 在许多情况中,读者仍然难以用这些算法来量化这些算算算法的好处,因为没有常用基准。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Exact Stochastic Second Order Deep Learning
Arxiv
0+阅读 · 2021年4月8日
Arxiv
0+阅读 · 2021年4月6日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员