Ordinary differential equation (ODE) model whose regression curves are a set of solution curves for some ODEs, poses a challenge in parameter estimation. The challenge due to the frequent absence of analytic solutions and the complicated likelihood surface, tends to be more severe especially for larger models with many parameters and variables. Yang and Lee (2020) proposed state-space model with variational Bayes (SSVB) for ODE, capable of fast and stable estimation in somewhat large ODE models. The method has shown excellent performance in parameter estimation but has a weakness of underestimation of the posterior covariance, which originates from the mean-field variational method. This paper proposes a way to overcome the weakness, by using the Laplace approximation. In numerical experiments, the covariance modified by the Laplace approximation showed a high degree of improvement when checked against the covariances obtained by a standard Markov chain Monte Carlo method. With the improved covariance estimation, the SSVB renders fairly accurate posterior approximations.
翻译:普通差分方程(ODE)模型,其回归曲线是某些ODE的一套解决方案曲线,对参数估计构成挑战。由于经常缺乏分析解决方案和复杂的概率表面,挑战往往更为严峻,特别是对于具有许多参数和变量的较大模型。杨氏和李氏(202020年)提议了ODE的州空间模型,配有可变贝贝(SSVB),能够在一些大的ODE模型中快速和稳定地估算。该方法在参数估计方面表现优异,但在低估源自平均场变异法的后方变量方面弱小。本文建议了一种方法,通过使用拉普尔近似法克服弱点。在数字实验中,拉普特近似修改的共变数显示,在对照标准马可夫链蒙卡洛方法获得的共变数进行检查时,国家空间模型的共变数有很大的改进。随着参数估计的改进,SSSVB提供了相当准确的后方位近似值。