This paper considers the problem of Byzantine dispersion and extends previous work along several parameters. The problem of Byzantine dispersion asks: given $n$ robots, up to $f$ of which are Byzantine, initially placed arbitrarily on an $n$ node anonymous graph, design a terminating algorithm to be run by the robots such that they eventually reach a configuration where each node has at most one non-Byzantine robot on it. Previous work solved this problem for rings and tolerated up to $n-1$ Byzantine robots. In this paper, we investigate the problem on more general graphs. We first develop an algorithm that tolerates up to $n-1$ Byzantine robots and works for a more general class of graphs. We then develop an algorithm that works for any graph but tolerates a lesser number of Byzantine robots. We subsequently turn our focus to the strength of the Byzantine robots. Previous work considers only "weak" Byzantine robots that cannot fake their IDs. We develop an algorithm that solves the problem when Byzantine robots are not weak and can fake IDs. Finally, we study the situation where the number of the robots is not $n$ but some $k$. We show that in such a scenario, the number of Byzantine robots that can be tolerated is severely restricted. Specifically, we show that it is impossible to deterministically solve Byzantine dispersion when $\lceil k/n \rceil > \lceil (k-f)/n \rceil$.
翻译:本文考虑拜占庭分散的问题, 并按多个参数扩展先前的工作。 拜占庭分散的问题是: 给美元机器人, 最多为美元, 最多为美元, 首先是拜占庭机器人, 最初被任意放置在美元节点匿名图上, 设计由机器人操作的终止算法, 这样他们最终会达到每个节点最多拥有一个非拜占庭机器人的配置。 之前的工作解决了环的问题, 并且容忍了最多达1美元 拜占庭机器人。 在本文中, 我们调查了更普通的图表中的问题。 我们首先开发了一种能够容忍最多为美元, 并用于更普通的图表类的算法。 我们随后设计了一个由任何图表操作运行的终止算法, 但是能容忍较少数量的拜占庭机器人。 我们随后将我们的焦点转向拜占庭机器人的强度。 之前的工作只考虑“ 硬性” 拜占庭机器人无法伪造自己的身份。 我们开发了一种算法, 当拜占庭机器人的硬度为美元时, 当我们所展示的是具体数字时, 我们所展示的是, 的机器人不是虚的。