Pre-trained large language models have significantly improved code generation. As these models scale up, there is an increasing need for the output to handle more intricate tasks and to be appropriately specialized to particular domains. Here, we target bioinformatics due to the amount of specialized domain knowledge, algorithms, and data operations this discipline requires. We present BioCoder, a benchmark developed to evaluate large language models (LLMs) in generating bioinformatics-specific code. BioCoder spans a broad spectrum of the field and covers cross-file dependencies, class declarations, and global variables. It incorporates 1026 Python functions and 1243 Java methods extracted from GitHub, along with 253 examples from the Rosalind Project, all pertaining to bioinformatics. Using topic modeling we show that overall coverage of the included code is representative of the full spectrum of bioinformatics calculations. BioCoder incorporates a fuzz-testing framework for evaluation. We have applied it to evaluate many models including InCoder, CodeGen, CodeGen2, SantaCoder, StarCoder, StarCoder+, InstructCodeT5+, GPT-3.5, and GPT-4. Furthermore, we finetuned StarCoder, demonstrating how our dataset can effectively enhance the performance of LLMs on our benchmark (by >15% in terms of Pass@K in certain prompt configurations and always >3%). The results highlight two key aspects of successful models: (1) Successful models accommodate a long prompt (> ~2600 tokens) with full context, for functional dependencies. (2) They contain specific domain knowledge of bioinformatics, beyond just general coding knowledge. This is evident from the performance gain of GPT-3.5/4 compared to the smaller models on the benchmark (50% vs up to ~25%). Our dataset, benchmark, Docker images, and scripts required for testing are all available at https://github.com/gersteinlab/biocoder.
翻译:暂无翻译