Federated Learning (FL) and Split Learning (SL) are privacy-preserving Machine-Learning (ML) techniques that enable training ML models over data distributed among clients without requiring direct access to their raw data. Existing FL and SL approaches work on horizontally or vertically partitioned data and cannot handle sequentially partitioned data where segments of multiple-segment sequential data are distributed across clients. In this paper, we propose a novel federated split learning framework, FedSL, to train models on distributed sequential data. The most common ML models to train on sequential data are Recurrent Neural Networks (RNNs). Since the proposed framework is privacy preserving, segments of multiple-segment sequential data cannot be shared between clients or between clients and server. To circumvent this limitation, we propose a novel SL approach tailored for RNNs. A RNN is split into sub-networks, and each sub-network is trained on one client containing single segments of multiple-segment training sequences. During local training, the sub-networks on different clients communicate with each other to capture latent dependencies between consecutive segments of multiple-segment sequential data on different clients, but without sharing raw data or complete model parameters. After training local sub-networks with local sequential data segments, all clients send their sub-networks to a federated server where sub-networks are aggregated to generate a global model. The experimental results on simulated and real-world datasets demonstrate that the proposed method successfully train models on distributed sequential data, while preserving privacy, and outperforms previous FL and centralized learning approaches in terms of achieving higher accuracy in fewer communication rounds.
翻译:联邦学习(FL) 和 Splet Learning (SL) 是保护隐私的机械学习(ML) 技术, 使ML模型与客户之间分布的数据相匹配而无需直接访问原始数据。 现有的FL 和 SL 在横向或垂直分割数据上使用横向或纵向分割数据, 无法处理由多个部分的相继数据在客户之间分布的顺序分割数据。 在本文中, 我们提议了一个新型的联邦共享分割学习框架( FedSL ), 用于对分布式序列数据进行模型序列模型模型模型模型模型模型。 在连续神经网络中, 最常见的 ML 模型模型模型模型模型模型模型模型是用来培训的模型。 由于拟议框架是隐私保存( RNNNN), 因此, 客户之间无法共享多个部分的顺序顺序顺序顺序序列数据。 为了绕过这一限制, 我们建议为 RNNNS( RNE) 专门设计了一个全新的 SL 方法, 每个子网络都在一个客户中包含多个模型模型模型序列培训序列序列序列序列的单一部分。 在当地培训中, 学习不同客户之间的分组,, 学习不同的客户在连续的 Bestrealtermell 数据序列中, 数据分组数据转换数据到 数据分组数据到 数据 数据 数据 数据 数据 数据系统进行系统 以 以 以 以 向下 向下 学习 。