The success of multilingual pre-trained models is underpinned by their ability to learn representations shared by multiple languages even in absence of any explicit supervision. However, it remains unclear how these models learn to generalise across languages. In this work, we conjecture that multilingual pre-trained models can derive language-universal abstractions about grammar. In particular, we investigate whether morphosyntactic information is encoded in the same subset of neurons in different languages. We conduct the first large-scale empirical study over 43 languages and 14 morphosyntactic categories with a state-of-the-art neuron-level probe. Our findings show that the cross-lingual overlap between neurons is significant, but its extent may vary across categories and depends on language proximity and pre-training data size.
翻译:多语种预先培训模式的成功取决于它们是否有能力学习多种语言共有的表述,即使没有明确的监督。然而,这些模式如何在各种语言之间进行概括化。在这项工作中,我们推测多语种预先培训模式可以产生语法学通用抽象的语法。特别是,我们调查不同语言的同一组神经元是否对形态合成信息进行了编码。我们进行了第一场大型实验性研究,范围超过43种语言和14个形态合成类别,并进行了最先进的神经神经级调查。我们的调查结果显示,神经元之间的跨语言重叠相当大,但其程度可能因类别不同而不同,取决于语言的接近程度和训练前的数据大小。