We show that the two-dimensional (2D) local Hamiltonian problem with the constraint that the ground state obeys area laws is QMA-complete. We also prove similar results in 2D translation-invariant systems and for the 3D Heisenberg and Hubbard models with local magnetic fields. Consequently, unless MA = QMA, not all ground states of 2D local Hamiltonians with area laws have efficient classical representations that support efficient computation of local expectation values. In the future, even if area laws are proved for ground states of 2D gapped systems, the computational complexity of these systems remains unclear.
翻译:我们发现,局部汉密尔顿(Hamilton)的二维(2D)问题与地面国家遵守地区法律的限制是QMA完成的。 我们还证明2D翻译变异系统以及3D海森堡和赫伯德模型与本地磁场的类似结果。 因此,除非MA = QMA,否则并非所有具有地区法律的2D地方汉密尔顿人地面州都有有效的传统表现,支持高效计算本地期望值。 今后,即使对2D缺陷系统的地面状态证明地区法律,这些系统的计算复杂性仍然不清楚。