Multimodal multi-objective problems (MMOPs) commonly arise in real-world problems where distant solutions in decision space correspond to very similar objective values. To obtain all solutions for MMOPs, many multimodal multi-objective evolutionary algorithms (MMEAs) have been proposed. For now, few studies have encompassed most of the recently proposed representative MMEAs and made a comparative comparison. In this study, we first review the related works during the last two decades. Then, we choose 12 state-of-the-art algorithms that utilize different diversity-maintaining techniques and compared their performance on existing test suites. Experimental results indicate the strengths and weaknesses of different techniques on different types of MMOPs, thus providing guidance on how to select/design MMEAs in specific scenarios.
翻译:在现实世界中,决策空间的远方解决办法与非常相似的客观价值相对应。为了获得对MMOP的所有解决办法,提出了许多多式多目标进化算法(MMEAs)建议。现在,很少有研究涵盖了最近提出的大多数代表MMEAs,并进行了比较。在本研究中,我们首先审查了过去二十年的相关工作。然后,我们选择了12种最先进的算法,这些算法利用了不同的多样性维护技术,比较了它们在现有测试套件上的性能。实验结果表明不同类型MMOPs的不同技术的长处和弱点,从而为如何选择/设计具体情景下的MMEA提供了指导。