We introduce the interactive tool pandemonium to cluster model predictions that depend on a set of parameters. The model predictions are used to define the coordinates in observable space which go into the clustering. The results of this partitioning are then visualized in both observable and parameter space to study correlations between them. The tool offers multiple choices for coordinates, distance functions and linkage methods within hierarchical clustering. It provides a set of diagnostic statistics and visualization methods to study the clustering results in order to interpret the outcome. The methods are most useful in an interactive environment that enables exploration, and we have implemented them with a graphical user interface in R. We demonstrate the concepts with an application to phenomenological studies in flavor physics in the context of the so-called B anomalies.


翻译:我们引入了交互式工具平台, 用于取决于一组参数的集束模型预测。 模型预测用于定义进入集束的可观测空间的坐标。 然后在可观测空间和参数空间中将这种分割的结果可视化, 以研究它们之间的相互关系。 该工具为分层集群中的坐标、 距离函数和联系方法提供了多种选择。 它提供了一套诊断性统计和可视化方法, 用于研究集成结果, 以便解释结果。 这些方法在互动环境中最有用, 有助于探索, 我们用R. 中的图形用户界面来实施这些方法。 我们用所谓的 B 异常 来演示这些概念, 并应用在调味物理中的元素学研究。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
18+阅读 · 2021年3月16日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
3+阅读 · 2018年4月5日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员