The logistic regression estimator is known to inflate the magnitude of its coefficients if the sample size $n$ is small, the dimension $p$ is (moderately) large or the signal-to-noise ratio $1/\sigma$ is large (probabilities of observing a label are close to 0 or 1). With this in mind, we study the logistic regression estimator with $p\ll n/\log n$, assuming Gaussian covariates and labels generated by the Gaussian link function, with a mild optimization constraint on the estimator's length to ensure existence. We provide finite sample guarantees for its direction, which serves as a classifier, and its Euclidean norm, which is an estimator for the signal-to-noise ratio. We distinguish between two regimes. In the low-noise/small-sample regime ($\sigma\lesssim (p\log n)/n$), we show that the estimator's direction (and consequentially the classification error) achieve the rate $(p\log n)/n$ - up to the log term as if the problem was noiseless. In this case, the norm of the estimator is at least of order $n/(p\log n)$. If instead $(p\log n)/n\lesssim \sigma\lesssim 1$, the estimator's direction achieves the rate $\sqrt{\sigma p\log n/n}$, whereas its norm converges to the true norm at the rate $\sqrt{p\log n/(n\sigma^3)}$. As a corollary, the data are not linearly separable with high probability in this regime. In either regime, logistic regression provides a competitive classifier.
翻译:暂无翻译