Causal decomposition analysis provides a way to identify mediators that contribute to health disparities between marginalized and non-marginalized groups. In particular, the degree to which a disparity would be reduced or remain after intervening on a mediator is of interest. Yet, estimating disparity reduction and remaining might be challenging for many researchers, possibly because there is a lack of understanding of how each estimation method differs from other methods. In addition, there is no appropriate estimation method available for a certain setting (i.e., a regression-based approach with a categorical mediator). Therefore, we review the merits and limitations of the existing three estimation methods (i.e., regression, weighting, and imputation) and provide two new extensions that are useful in practical settings. A flexible new method uses an extended imputation approach to address a categorical and continuous mediator or outcome while incorporating any nonlinear relationships. A new regression method provides a simple estimator that performs well in terms of bias and variance but at the cost of assuming linearity, except for exposure and mediator interactions. Recommendations are given for choosing methods based on a review of different methods and simulation studies. We demonstrate the practice of choosing an optimal method by identifying mediators that reduce race and gender disparity in cardiovascular health, using data from the Midlife Development in the US study.


翻译:造成分解的原因分析为确定造成边缘化群体和非边缘化群体之间健康差异的调解人提供了一种方法; 特别是,在对调解人进行干预后减少或继续缩小差异的程度值得注意; 然而,估计减少差异和剩余差异对于许多研究人员来说可能具有挑战性,可能是因为对每种估算方法与其他方法有何不同缺乏了解; 此外,对于某种环境没有适当的估计方法(即与绝对调解人一道采取基于回归的方法),因此,我们审查现有三种估算方法(即回归、加权和估算)的优缺点和局限性,并提供两种在实际环境中有用的新扩展。 灵活的新方法采用扩大的估算方法,处理绝对和持续的调解人或结果,同时纳入任何非线性关系。 新的回归方法提供了一种简单的估计方法,在偏差和差异方面表现良好,但以假设一致性为代价(接触和调解互动除外),因此,我们审查了现有三种估算方法(即回归、加权和估算)的优缺点和局限性,并提供了两种在实际环境中有用的新扩展方法。 灵活的新方法使用一种扩大的估算方法,在将任何非线性关系中,同时采用一种是使用一种选择一种绝对的计算方法,通过确定最佳的计算方法,通过确定一个最佳的仲裁者在健康研究中,从而确定一种选择一种方法,从而确定一种最佳方法,从而确定一种性别- 选择一种方法。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Arxiv
0+阅读 · 2021年11月8日
Arxiv
0+阅读 · 2021年11月4日
Online Estimation for Functional Data
Arxiv
0+阅读 · 2021年11月4日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员