We develop two novel approaches for constructing skewed and bimodal flexible distributions that can effectively generalize classical symmetric distributions. We illustrate the application of introduced techniques by extending normal, student-t, and Laplace distributions. We also study the properties of the newly constructed distributions. The method of maximum likelihood is proposed for estimating the model parameters. Furthermore, the application of new distributions is represented using real-life data.
翻译:我们开发了两种新颖的办法来构建偏斜和双模式灵活分布,可以有效地普及古典对称分布。我们通过推广正常的、学生的和拉普尔分布来说明引进技术的应用。我们还研究了新构建的分布特性。提出了估算模型参数的最大可能性方法。此外,使用真实数据代表了新分布的应用。