Traditionally, finite automata theory has been used as a framework for the representation of possibly infinite sets of strings. In this work, we introduce the notion of second-order finite automata, a formalism that combines finite automata with ordered decision diagrams, with the aim of representing possibly infinite {\em sets of sets} of strings. Our main result states that second-order finite automata can be canonized with respect to the second-order languages they represent. Using this canonization result, we show that sets of sets of strings represented by second-order finite automata are closed under the usual Boolean operations, such as union, intersection, difference and even under a suitable notion of complementation. Additionally, emptiness of intersection and inclusion are decidable. We provide two algorithmic applications for second-order automata. First, we show that several width/size minimization problems for deterministic and nondeterministic ODDs are solvable in fixed-parameter tractable time when parameterized by the width of the input ODD. In particular, our results imply FPT algorithms for corresponding width/size minimization problems for ordered binary decision diagrams (OBDDs) with a fixed variable ordering. Previously, only algorithms that take exponential time in the size of the input OBDD were known for width minimization, even for OBDDs of constant width. Second, we show that for each $k$ and $w$ one can count the number of distinct functions computable by ODDs of width at most $w$ and length $k$ in time $h(|\Sigma|,w)\cdot k^{O(1)}$, for a suitable $h:\mathbb{N}\times \mathbb{N}\rightarrow \mathbb{N}$. This improves exponentially on the time necessary to explicitly enumerate all such functions, which is exponential in both the width parameter $w$ and in the length $k$ of the ODDs.


翻译:传统上, 限制自动数据理论 { 被使用为代表可能无限的字符串的框架 { 。 在这项工作中, 我们引入了第二阶的自定义自定义数概念, 将自定义自定义数与定决定图相结合, 目的是代表可能无限的 = em 组 。 我们的主要结果显示, 第二阶的自定义数可以针对它们所代表的第二阶语言进行最小化。 使用此自定义结果, 我们显示, 由二阶的自定义内值表示的自定义数( 限自定义数) 。 在通常的自定义值操作中, 以自定义的自定义值为单位, 如自定义的自定义数, 自定义自定义的自定义数, 自定义的自定义数, 自定义的自定义的自定义数, 自定义的自定义的自定义数, 自定义的自定义的自定义的自定义的自定义数, 自定义的自定义的自定义的自定义数, 自定义的自定义数, 自定义的自定义自定义的自定义的自定义的自定义的自定义的自定义的自定义的自定义数。 自定义的自定义的自定义的自定义数, 自定义的自定义数, 自定义的自定义的自定义的自定义的自定义的自定义的自定义的自定义的自定义数, 自定义的自定义量的自定义量的自定义数, 自定义数, 自定义量的自定义的自定义的自定义的自定义的自定义数。

0
下载
关闭预览

相关内容

专知会员服务
73+阅读 · 2021年4月8日
专知会员服务
62+阅读 · 2020年3月4日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
已删除
将门创投
5+阅读 · 2019年4月29日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月21日
Arxiv
0+阅读 · 2021年10月21日
Arxiv
0+阅读 · 2021年10月18日
Arxiv
0+阅读 · 2021年10月18日
Arxiv
0+阅读 · 2021年10月17日
VIP会员
相关VIP内容
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
已删除
将门创投
5+阅读 · 2019年4月29日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员