Interpolating a skewed conditional spatial random field with missing data is cumbersome in the absence of Gaussianity assumptions. Maintaining spatial homogeneity and continuity around the observed random spatial point is also challenging, especially when interpolating along a spatial surface, focusing on the boundary points as a neighborhood. Otherwise, the point far away from one may appear the closest to another. As a result, importing the hierarchical clustering concept on the spatial random field is as convenient as developing the copula with the interface of the Expectation-Maximization algorithm and concurrently utilizing the idea of the Bayesian framework. This paper introduces a spatial cluster-based C-vine copula and a modified Gaussian kernel to derive a novel spatial probability distribution. Another investigation in this paper uses an algorithm in conjunction with a different parameter estimation technique to make spatial-based copula interpolation more compatible and efficient. We apply the proposed spatial interpolation approach to the air pollution of Delhi as a crucial circumstantial study to demonstrate this newly developed novel spatial estimation technique.
翻译:在没有高斯假设的情况下,用缺失的数据对一个偏斜的有条件空间随机场进行内插是繁琐的。 保持观察到的随机空间点周围的空间同质性和连续性也是具有挑战性的, 特别是在空间表面的内插时, 以邻处的边界点为重点。 否则, 点距离可能看起来最近。 因此, 将空间随机场的分层集群概念引进空间随机场, 与利用期望- 最大化算法界面开发相交的相交点一样方便, 并同时利用巴伊西亚框架的概念。 本文介绍了基于空间集群的C- vine cocula 和 修改的高斯内核, 以获得新的空间概率分布。 本文的另一项调查使用一种算法, 结合不同的参数估计技术, 使基于空间的相交点间插点更加兼容和高效。 我们对德里的空气污染采用拟议的空间间插法, 作为一项至关重要的间接研究, 来展示这一新开发的新空间估计技术。