Recent work has shown that, in generative modeling, cross-entropy loss improves smoothly with model size and training compute, following a power law plus constant scaling law. One challenge in extending these results to reinforcement learning is that the main performance objective of interest, mean episode return, need not vary smoothly. To overcome this, we introduce *intrinsic performance*, a monotonic function of the return defined as the minimum compute required to achieve the given return across a family of models of different sizes. We find that, across a range of environments, intrinsic performance scales as a power law in model size and environment interactions. Consequently, as in generative modeling, the optimal model size scales as a power law in the training compute budget. Furthermore, we study how this relationship varies with the environment and with other properties of the training setup. In particular, using a toy MNIST-based environment, we show that varying the "horizon length" of the task mostly changes the coefficient but not the exponent of this relationship.


翻译:最近的工作表明,在基因建模方面,跨热带损失随着模型规模和培训的计算,按照权力法和不断的缩放法,随着模型规模和培训的计算而平稳地改善。将这些结果扩展至强化学习的一个挑战是,兴趣的主要性能目标(平均回流)并不需要顺利地变化。为了克服这一点,我们引入了“自然性能* ”, 返回的单一性能被定义为在不同大小的模型大家庭中实现给定回报所需的最低计算值。我们发现,在一系列环境中,内在性能尺度在模型规模和环境相互作用中是权力法的。因此,在基因建模中,最佳的模型规模尺度作为培训计算预算中的权力法。此外,我们研究这种关系与环境以及培训设置的其他属性如何不同。特别是,我们使用一个以微小的MNIST为基础的环境,我们发现任务“高度长度”的变化主要是改变系数,而不是这种关系的延伸。

0
下载
关闭预览

相关内容

【2022新书】强化学习工业应用,408页pdf
专知会员服务
226+阅读 · 2022年2月3日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
2019必读的十大深度强化学习论文
专知会员服务
57+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
2+阅读 · 2023年4月12日
Arxiv
21+阅读 · 2022年11月8日
Arxiv
15+阅读 · 2022年6月14日
Arxiv
11+阅读 · 2018年4月25日
VIP会员
相关VIP内容
【2022新书】强化学习工业应用,408页pdf
专知会员服务
226+阅读 · 2022年2月3日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
2019必读的十大深度强化学习论文
专知会员服务
57+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员