Continuum-armed bandits (a.k.a., black-box or $0^{th}$-order optimization) involves optimizing an unknown objective function given an oracle that evaluates the function at a query point, with the goal of using as few query points as possible. In the most well-studied case, the objective function is assumed to be Lipschitz continuous and minimax rates of simple and cumulative regrets are known in both noiseless and noisy settings. This paper studies continuum-armed bandits under more general smoothness conditions, namely Besov smoothness conditions, on the objective function. In both noiseless and noisy conditions, we derive minimax rates under simple and cumulative regrets. Our results show that minimax rates over objective functions in a Besov space are identical to minimax rates over objective functions in the smallest H\"older space into which the Besov space embeds.


翻译:连续持枪的匪徒(a.k.a.a.,黑盒或$0 ⁇ _th_s-order 优化)涉及优化一个未知的目标功能,给一个在查询点评估该功能的神器提供一种未知目标功能,目的是尽可能使用几个查询点,目的是尽可能少地使用查询点。在最受研究的案例中,目标功能假定是Lipschitz连续的,在无噪音和吵闹的环境中,简单和累积的遗憾的最小速率为Lipschitz,在无噪音和噪音的环境中,简单和累积的。本文研究在目标功能方面,即Besov光滑状态下,连续武装的匪徒。在无噪音和噪音的条件下,我们在简单和累积的遗憾下得出微速率。我们的结果显示,贝索夫空间中客观功能的最小速率与贝索夫空间所嵌入的最小H\老的客观功能的微速率相同。

0
下载
关闭预览

相关内容

我们给定x,函数都会输出一个f(X),这个输出的f(X)与真实值Y可能是相同的,也可能是不同的,为了表示拟合的好坏,就用一个函数来度量拟合的程度。这个函数就称为损失函数(loss function),或者叫代价函数(cost function)
【AAAI2021】信息瓶颈和有监督表征解耦
专知会员服务
21+阅读 · 2021年1月27日
专知会员服务
51+阅读 · 2020年12月14日
分布式并行架构Ray介绍
CreateAMind
10+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
0+阅读 · 2021年5月17日
Arxiv
0+阅读 · 2021年5月14日
Arxiv
0+阅读 · 2021年5月13日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
【AAAI2021】信息瓶颈和有监督表征解耦
专知会员服务
21+阅读 · 2021年1月27日
专知会员服务
51+阅读 · 2020年12月14日
相关资讯
分布式并行架构Ray介绍
CreateAMind
10+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员