Weighted Model Integration (WMI) is a popular formalism aimed at unifying approaches for probabilistic inference in hybrid domains, involving logical and algebraic constraints. Despite a considerable amount of recent work, allowing WMI algorithms to scale with the complexity of the hybrid problem is still a challenge. In this paper we highlight some substantial limitations of existing state-of-the-art solutions, and develop an algorithm that combines SMT-based enumeration, an efficient technique in formal verification, with an effective encoding of the problem structure. This allows our algorithm to avoid generating redundant models, resulting in substantial computational savings. An extensive experimental evaluation on both synthetic and real-world datasets confirms the advantage of the proposed solution over existing alternatives.
翻译:加权模型整合(WMI)是一种流行的形式主义,旨在统一混合域中概率推论的方法,涉及逻辑和代数限制。尽管最近做了大量工作,允许WMI算法与混合问题的复杂性相适应,这仍然是一个挑战。 在本文中,我们强调现有最新解决方案的一些重大局限性,并发展一种将基于SMT的查点(基于SMT的查点的有效正式核查技术)与问题结构的有效编码相结合的算法。这使得我们的算法能够避免产生冗余模型,从而节省大量计算费用。对合成和现实世界数据集的广泛实验评估证实了拟议解决方案对现有替代品的优势。