We introduce Tree-AMP, standing for Tree Approximate Message Passing, a python package for compositional inference in high-dimensional tree-structured models. The package provides a unifying framework to study several approximate message passing algorithms previously derived for a variety of machine learning tasks such as generalized linear models, inference in multi-layer networks, matrix factorization, and reconstruction using non-separable penalties. For some models, the asymptotic performance of the algorithm can be theoretically predicted by the state evolution, and the measurements entropy estimated by the free entropy formalism. The implementation is modular by design: each module, which implements a factor, can be composed at will with other modules to solve complex inference tasks. The user only needs to declare the factor graph of the model: the inference algorithm, state evolution and entropy estimation are fully automated.
翻译:我们引入了树- AMP, 站立于树的近似消息传递中, 这是一种高维树形结构模型中构成性推断的保温包。 包提供了一个统一框架, 用于研究先前为各种机器学习任务( 如通用线性模型、多层网络中的推论、 矩阵因子化以及使用不可分离的罚款重建)而得出的几种近似信息传递算法。 对于某些模型来说, 算法的无症状性能可以在理论上根据状态演变预测, 以及由自由的昆虫形式学估计的测量酶。 执行是模块化的: 每个模块, 执行一个要素, 都可以随意志与其他模块一起组成, 以解决复杂的推理任务 。 用户只需要声明模型的系数图: 推论算法、 状态进化和 昆虫估计是完全自动化的 。