In this work we propose a novel method to calculate mean first-passage times (MFPTs) for random walks on graphs, based on a dimensionality reduction technique for Markov State Models, known as local-equilibrium (LE). We show that for a broad class of graphs, which includes trees, LE coarse-graining preserves the MFPTs between certain nodes, upon making a suitable choice of the coarse-grained states (or clusters). We prove that this relation is exact for graphs that can be coarse-grained into a one-dimensional lattice where each cluster connects to the lattice only through a single node of the original graph. A side result of the proof generalises the well-known essential edge lemma (EEL), which is valid for reversible random walks, to irreversible walkers. Such a generalised EEL leads to explicit formulae for the MFPTs between certain nodes in this class of graphs. For graphs that do not fall in this class, the generalised EEL provides useful approximations if the graph allows a one-dimensional coarse-grained representation and the clusters are sparsely interconnected. We first demonstrate our method for the simple random walk on the $c$-ary tree, then we consider other graph structures and more general random walks, including irreversible random walks.
翻译:在这项工作中,我们提出了一个新颖的方法,用于计算图表中随机行走的平均第一通时间(MFPTs),该方法基于马克夫州模型(称为当地平衡(LE))的维度减少技术。我们展示了对于包括树木在内的广大类图表来说,LE粗毛毛毛毛毛毛毛毛毛毛毛在对某些节点进行适当选择后,可以在某些粗略的偏差状态(或组)之间保留MFPTs。我们证明,对于每个组仅通过原始图的单一节点连接到拉蒂的单维方格图来说,这种关系是准确的。对于每个组仅通过原始图的单一节点连接到拉蒂的单维方格。对于一个广为人所知的基本边缘lemma(EEL)来说,LEE粗略毛毛毛毛毛毛毛毛毛毛毛毛毛毛毛毛毛毛毛毛毛毛毛毛毛毛毛毛毛毛毛毛的图形,在对本类图中某些节点(或组)来说是明确的公式。对于不跌落到这一类的图表,一般的,一般的ELELELEG值的图表只有一个普通的图表提供有用的直径直径直观,如果我们的直径直径直径直径直径代表,如果我们的直径直径直径直径直径的直径的直径的直径的直径的直径的直径直径,如果我们的直径的直径直径的直径的图表,如果我们的直径直的直的直的直的直径直径直径直径直径直径直径直的直径直的图。