Machine learning in remote sensing has matured alongside a proliferation in availability and resolution of geospatial imagery, but its utility is bottlenecked by the need for labeled data. What's more, many labeled geospatial datasets are specific to certain regions, instruments, or extreme weather events. We investigate the application of modern domain-adaptation to multiple proposed geospatial benchmarks, uncovering unique challenges and proposing solutions to them.
翻译:遥感方面的机器学习已经成熟,同时地理空间图像的提供和分辨率也在激增,但其效用因需要贴标签数据而受阻。此外,许多贴标签的地理空间数据集是某些区域、仪器或极端天气事件所特有的。我们调查了现代域适应多种拟议地理空间基准的应用情况,发现了独特的挑战,并提出了解决办法。