As major progress is made in open-ended text generation, measuring how close machine-generated text is to human language remains a critical open problem. We propose Mauve, a comparison measure for open-ended text generation, which directly compares a generation model's distribution to that of human-written text. Mauve measures the mean area under a divergence curve for the two distributions, exploring the trade-off between two types of errors: those arising from parts of the human distribution that the model distribution approximates well, and those it does not. Mauve extends a family of information divergence metrics, introducing a tractable approximation based on computing the KL divergence in a quantized embedding space. This yields an efficient implementation that scales up to modern text generation models. Through an extensive empirical study on three open-ended generation tasks, we find that Mauve identifies known properties of generated text, scales naturally with model size, and correlates with human judgments, with fewer restrictions than existing distributional evaluation metrics.


翻译:由于在不限名额的文本生成方面取得重大进展,衡量机器生成的文本与人文的接近程度仍然是一个重要的未决问题。我们建议对不限名额的文本生成进行对比,将一代模式的分布与人文文本的分布进行直接比较。在两种分布的差别曲线下测量平均区域,探索两种类型的错误之间的权衡:由模型分布很接近于人文分布的部分产生的错误,以及没有的错误。 Mauve 扩展了一个信息差异度量度的大家庭,引入了一个基于在量化嵌入空间计算 KL 差异的可移动近似值。这产生了一种有效的实施,将现代文本生成模型的尺度放大。通过对三种不限名额的一代任务进行广泛的实证研究,我们发现Mauve 确定了生成文本的已知属性,与模型大小自然相适应,与人类判断相关,限制比现有的分配评价度值要少。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Neural Module Networks for Reasoning over Text
Arxiv
9+阅读 · 2019年12月10日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
Arxiv
3+阅读 · 2018年12月19日
Arxiv
6+阅读 · 2018年2月28日
VIP会员
相关资讯
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员