We study the existence of finite characterisations for modal formulas. A finite characterisation of a modal formula $\varphi$ is a finite collection of positive and negative examples that distinguishes $\varphi$ from every other, non-equivalent modal formula, where an example is a finite pointed Kripke structure. This definition can be restricted to specific frame classes and to fragments of the modal language: a modal fragment $L$ admits finite characterisations with respect to a frame class $F$ if every formula $\varphi\in L$ has a finite characterisation with respect to $L$ consting of examples that are based on frames in $F$. Finite characterisations are useful for illustration, interactive specification, and debugging of formal specifications, and their existence is a precondition for exact learnability with membership queries. We show that the full modal language admits finite characterisations with respect to a frame class $F$ only when the modal logic of $F$ is locally tabular. We then study which modal fragments, freely generated by some set of connectives, admit finite characterisations. Our main result is that the positive modal language without the truth-constants $\top$ and $\bot$ admits finite characterisations w.r.t. the class of all frames. This result is essentially optimal: finite characterizability fails when the language is extended with the truth constant $\bot$ or with all but very limited forms of negation.
翻译:本文研究模态公式的有限特征化存在性。模态公式$\varphi$的有限特征化是指一组由正例和反例组成的有限集合,能够将$\varphi$和其他非等价的模态公式区分开来,其中每个例子是一个有限点Kripke结构。此定义可针对特定的框架类和模态语言片段进行限制:如果每个公式$\varphi\in L$针对框架类$F$都有一个基于$F$框架的有限特征化集合,则模态片段$L$在框架类$F$上允许有限特征化。有限特征化对于讲授、交互式规范化和形式化规约的调试很有用,且它们的存在是成员查询的精确可学习性的前提。我们证明了只有当框架逻辑在局部表格化时,完整的模态语言在框架类$F$上才允许有限特征化。然后,我们研究了由一些联结符自由生成的模态片段允许有限特征化的情况。我们的主要结果是去除$\top$和$\bot$真值常量的正模态人工语言允许针对所有框架的有限特征化。该结果基本上是最优的:扩展带有$\bot$机器人具有非常有限的否定形式是可以的,但有限的特征性将会失败。