We study the image retrieval problem at the wireless edge, where an edge device captures an image, which is then used to retrieve similar images from an edge server. These can be images of the same person or a vehicle taken from other cameras at different times and locations. Our goal is to maximize the accuracy of the retrieval task under power and bandwidth constraints over the wireless link. Due to the stringent delay constraint of the underlying application, sending the whole image at a sufficient quality is not possible. We propose two alternative schemes based on digital and analog communications, respectively. In the digital approach, we first propose a deep neural network (DNN) aided retrieval-oriented image compression scheme, whose output bit sequence is transmitted over the channel using conventional channel codes. In the analog joint source and channel coding (JSCC) approach, the feature vectors are directly mapped into channel symbols. We evaluate both schemes on image based re-identification (re-ID) tasks under different channel conditions, including both static and fading channels. We show that the JSCC scheme significantly increases the end-to-end accuracy, speeds up the encoding process, and provides graceful degradation with channel conditions. The proposed architecture is evaluated through extensive simulations on different datasets and channel conditions, as well as through ablation studies.


翻译:我们研究无线边缘的图像检索问题,在无线边缘,一个边缘装置捕捉一个图像,然后用来从边缘服务器上检索类似图像。这些图像可以是同一人或在不同时间和地点从其他相机上取走的车辆的图像。我们的目标是在无线链接的电力和带宽限制下,最大限度地提高检索任务的准确性。由于基础应用程序的严格延迟限制,不可能以足够质量发送整个图像。我们建议了分别基于数字通信和模拟通信的两个替代方案。在数字方法中,我们首先提出一个深神经网络(DNN)辅助检索导向图像压缩方案,其输出位序列使用传统频道代码在频道上传输。在模拟联合源和频道编码(JSCC)方法中,特性矢量直接被映入频道符号。我们根据不同频道条件下的重新定位(re-ID)任务评估两种方案,包括静态和淡化的频道。我们显示,JSC方案大大提高了端到端的准确性,加快了编码进程,并且提供了优度降解的图像,通过模拟,通过不同的频道研究对不同的频道进行了评估。

0
下载
关闭预览

相关内容

从20世纪70年代开始,有关图像检索的研究就已开始,当时主要是基于文本的图像检索技术(Text-based Image Retrieval,简称TBIR),利用文本描述的方式描述图像的特征,如绘画作品的作者、年代、流派、尺寸等。到90年代以后,出现了对图像的内容语义,如图像的颜色、纹理、布局等进行分析和检索的图像检索技术,即基于内容的图像检索(Content-based Image Retrieval,简称CBIR)技术。CBIR属于基于内容检索(Content-based Retrieval,简称CBR)的一种,CBR中还包括对动态视频、音频等其它形式多媒体信息的检索技术。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
54+阅读 · 2020年11月3日
专知会员服务
45+阅读 · 2020年10月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
CVPR2017有哪些值得读的Image Caption论文?
PaperWeekly
10+阅读 · 2017年11月29日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
LibRec 每周算法:Wide & Deep (by Google)
LibRec智能推荐
9+阅读 · 2017年10月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
12+阅读 · 2020年6月20日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Arxiv
6+阅读 · 2019年11月14日
Local Relation Networks for Image Recognition
Arxiv
4+阅读 · 2019年4月25日
Arxiv
12+阅读 · 2018年1月11日
Arxiv
3+阅读 · 2012年11月20日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
CVPR2017有哪些值得读的Image Caption论文?
PaperWeekly
10+阅读 · 2017年11月29日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
LibRec 每周算法:Wide & Deep (by Google)
LibRec智能推荐
9+阅读 · 2017年10月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
12+阅读 · 2020年6月20日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Arxiv
6+阅读 · 2019年11月14日
Local Relation Networks for Image Recognition
Arxiv
4+阅读 · 2019年4月25日
Arxiv
12+阅读 · 2018年1月11日
Arxiv
3+阅读 · 2012年11月20日
Top
微信扫码咨询专知VIP会员