We compare the model-theoretic expressiveness of the existential fragment of Separation Logic over unrestricted relational signatures (SLR) -- with only separating conjunction as logical connective and higher-order inductive definitions, traditionally known as the symbolic heap fragment -- with the expressiveness of (Monadic) Second Order Logic ((M)SO). While SLR and MSO are incomparable on structures of unbounded treewidth, it turns out that SLR can be embedded in SO, in general, and that MSO becomes a strict subset of SLR, when the treewidth of the models is bounded by a parameter given as input. We also discuss the problem of defining a fragment of SLR that is equivalent to MSO over models of bounded treewidth. Such a fragment would then become the most general Separation Logic with a decidable entailment problem, a key ingredient of practical verification methods for self-adapting (reconfigurable) component-based and distributed systems.
翻译:我们比较了分离逻辑相对于不受限制的关系签字(SLR)存在性碎片的模型理论表达性(SLR) -- -- 仅将结合作为逻辑连接和更高层次的感应定义,传统上称为象征性堆积碎片 -- -- 与(Monadic)第二顺序逻辑((M)SO)的表达性相比较。虽然SLR和MOSO在未受限制的树枝结构上是无法比较的,但事实证明,SLR一般可以嵌入SO,当模型的树边受作为输入的参数约束时,MOSO成为SL的严格组别。我们还讨论了界定SLR的碎片的问题,该碎片相当于MSO相对于受约束的树线的模型。这样,这种碎片就会成为最普遍的分离逻辑,与可分解的含料问题,这是自适应(可调的)组成部分和分布式系统的实际核查方法的一个关键成分。