We hybridize the methods of finite element exterior calculus for the Hodge-Laplace problem on differential $k$-forms in $\mathbb{R}^n$. In the cases $k = 0$ and $k = n$, we recover well-known primal and mixed hybrid methods for the scalar Poisson equation, while for $0 < k < n$, we obtain new hybrid finite element methods, including methods for the vector Poisson equation in $n = 2$ and $n = 3$ dimensions. We also generalize Stenberg postprocessing from $k = n$ to arbitrary $k$, proving new superconvergence estimates. Finally, we discuss how this hybridization framework may be extended to include nonconforming and hybridizable discontinuous Galerkin methods.
翻译:我们混合了Hodge-Laplace问题(美元=mathbb{R ⁇ n$,美元=0美元,美元=n美元)的有限元素外表微积分方法。在美元=0美元和美元=n美元的情况下,我们为calar Poisson等式回收了众所周知的原始和混合方法,而对于0美元 < k < n美元,我们获得了新的混合元素微积分方法,包括以美元=2美元和美元=3美元等值的矢量 Poisson方程式方法。我们还将Stenberg后处理从美元=n美元普遍化为任意性,证明新的超级趋同估计值。最后,我们讨论如何扩大这一混合化框架,以包括不相容和混合的加热金方法。