We hybridize the methods of finite element exterior calculus for the Hodge-Laplace problem on differential $k$-forms in $\mathbb{R}^n$. In the cases $k = 0$ and $k = n$, we recover well-known primal and mixed hybrid methods for the scalar Poisson equation, while for $0 < k < n$, we obtain new hybrid finite element methods, including methods for the vector Poisson equation in $n = 2$ and $n = 3$ dimensions. We also generalize Stenberg postprocessing from $k = n$ to arbitrary $k$, proving new superconvergence estimates. Finally, we discuss how this hybridization framework may be extended to include nonconforming and hybridizable discontinuous Galerkin methods.


翻译:我们混合了Hodge-Laplace问题(美元=mathbb{R ⁇ n$,美元=0美元,美元=n美元)的有限元素外表微积分方法。在美元=0美元和美元=n美元的情况下,我们为calar Poisson等式回收了众所周知的原始和混合方法,而对于0美元 < k < n美元,我们获得了新的混合元素微积分方法,包括以美元=2美元和美元=3美元等值的矢量 Poisson方程式方法。我们还将Stenberg后处理从美元=n美元普遍化为任意性,证明新的超级趋同估计值。最后,我们讨论如何扩大这一混合化框架,以包括不相容和混合的加热金方法。

0
下载
关闭预览

相关内容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系统编译器、体系结构和综合国际会议。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/cases/index.html
【CVPR2021】动态度量学习
专知会员服务
40+阅读 · 2021年3月30日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
44+阅读 · 2020年12月18日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年11月30日
VIP会员
相关VIP内容
【CVPR2021】动态度量学习
专知会员服务
40+阅读 · 2021年3月30日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
44+阅读 · 2020年12月18日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员