Standard Markov chain Monte Carlo methods struggle to explore distributions that are concentrated in the neighbourhood of low-dimensional structures. These pathologies naturally occur in a number of situations. For example, they are common to Bayesian inverse problem modelling and Bayesian neural networks, when observational data are highly informative, or when a subset of the statistical parameters of interest are non-identifiable. In this paper, we propose a strategy that transforms the original sampling problem into the task of exploring a distribution supported on a manifold embedded in a higher dimensional space; in contrast to the original posterior this lifted distribution remains diffuse in the vanishing noise limit. We employ a constrained Hamiltonian Monte Carlo method which exploits the manifold geometry of this lifted distribution, to perform efficient approximate inference. We demonstrate in several numerical experiments that, contrarily to competing approaches, the sampling efficiency of our proposed methodology does not degenerate as the target distribution to be explored concentrates near low dimensional structures.
翻译:标准 Markov 链 Monte Carlo 方法试图探索集中在低维结构周围的分布。 这些病理自然在几种情况下发生。 例如,这些病理在巴伊西亚反问题建模和巴伊西亚神经网络中很常见,因为观测数据信息非常丰富,或者当一组感兴趣的统计参数无法识别时。 在本文中,我们提出了一个战略,将原始采样问题转化为探索在高维空间内嵌入的柱子上所支持的分布的任务;与最初的后方相比,这种被提升的分布仍然分散在消失的噪声限制中。我们采用了一种受限制的汉密尔顿·蒙特卡洛方法,该方法利用这种被提升的分布的多重几何方法来进行高效的推断。 我们在若干数字实验中证明,与相互竞争的方法相反,我们拟议方法的采样效率不会随着要探索的低维结构附近浓缩物的目标分布而下降。