Deep reinforcement learning (DRL) has made significant achievements in many real-world applications. But these real-world applications typically can only provide partial observations for making decisions due to occlusions and noisy sensors. However, partial state observability can be used to hide malicious behaviors for backdoors. In this paper, we explore the sequential nature of DRL and propose a novel temporal-pattern backdoor attack to DRL, whose trigger is a set of temporal constraints on a sequence of observations rather than a single observation, and effect can be kept in a controllable duration rather than in the instant. We validate our proposed backdoor attack to a typical job scheduling task in cloud computing. Numerous experimental results show that our backdoor can achieve excellent effectiveness, stealthiness, and sustainability. Our backdoor's average clean data accuracy and attack success rate can reach 97.8% and 97.5%, respectively.


翻译:深入强化学习( DRL) 在许多现实世界应用中取得了显著成就。 但是这些现实世界应用通常只能提供部分观测, 以便通过隔离和噪音传感器来做出决策。 但是, 部分状态的可观察性可以用来隐藏后门的恶意行为 。 在本文中, 我们探索 DRL 的相继性质, 并向 DRL 提出一个新的时间模式后门攻击, 触发点是一系列时间限制, 对一系列观察进行时间限制, 而不是单一观察, 效果可以保持在可控制的时间里, 而不是在瞬间。 我们验证了我们提议的后门攻击, 而不是云计算中典型的工作时间安排任务。 许多实验结果显示, 我们的后门可以达到极好的效果、 隐秘性和可持续性。 我们的后门平均清洁数据准确度和攻击成功率可以分别达到97.8% 和 97.5% 。

0
下载
关闭预览

相关内容

深度强化学习 (DRL) 是一种使用深度学习技术扩展传统强化学习方法的一种机器学习方法。 传统强化学习方法的主要任务是使得主体根据从环境中获得的奖赏能够学习到最大化奖赏的行为。然而,传统无模型强化学习方法需要使用函数逼近技术使得主体能够学习出值函数或者策略。在这种情况下,深度学习强大的函数逼近能力自然成为了替代人工指定特征的最好手段并为性能更好的端到端学习的实现提供了可能。
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月23日
Arxiv
66+阅读 · 2022年4月13日
Arxiv
10+阅读 · 2021年11月10日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
14+阅读 · 2020年10月26日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关论文
Arxiv
0+阅读 · 2022年6月23日
Arxiv
66+阅读 · 2022年4月13日
Arxiv
10+阅读 · 2021年11月10日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
14+阅读 · 2020年10月26日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员