As the size of the pre-trained language model (PLM) continues to increase, numerous parameter-efficient transfer learning methods have been proposed recently to compensate for the tremendous cost of fine-tuning. Despite the impressive results achieved by large pre-trained language models (PLMs) and various parameter-efficient transfer learning (PETL) methods on sundry benchmarks, it remains unclear if they can handle inputs that have been distributionally shifted effectively. In this study, we systematically explore how the ability to detect out-of-distribution (OOD) changes as the size of the PLM grows or the transfer methods are altered. Specifically, we evaluated various PETL techniques, including fine-tuning, Adapter, LoRA, and prefix-tuning, on three different intention classification tasks, each utilizing various language models with different scales.
翻译:由于预先培训的语言模式(PLM)的规模继续扩大,最近提出了许多具有参数效率的转移学习方法,以弥补微调的巨大成本。尽管大型预先培训的语言模式(PLM)和各种参数效率转移学习方法(PETL)在杂项基准方面取得了令人印象深刻的成果,但是仍然不清楚它们是否能够有效地处理分配上的变化。在这项研究中,我们系统地探索随着PLM规模的扩大或转移方法的改变而发现分配外变化的能力。具体地说,我们评估了各种PETL技术,包括微调、适应器、LORA和前缀调整,涉及三种不同目的的分类任务,每个任务都使用不同尺度的不同语言模式。