Virtual try-on is a promising computer vision topic with a high commercial value wherein a new garment is visually worn on a person with a photo-realistic effect. Previous studies conduct their shape and content inference at one stage, employing a single-scale warping mechanism and a relatively unsophisticated content inference mechanism. These approaches have led to suboptimal results in terms of garment warping and skin reservation under challenging try-on scenarios. To address these limitations, we propose a novel virtual try-on method via progressive inference paradigm (PGVTON) that leverages a top-down inference pipeline and a general garment try-on strategy. Specifically, we propose a robust try-on parsing inference method by disentangling semantic categories and introducing consistency. Exploiting the try-on parsing as the shape guidance, we implement the garment try-on via warping-mapping-composition. To facilitate adaptation to a wide range of try-on scenarios, we adopt a covering more and selecting one warping strategy and explicitly distinguish tasks based on alignment. Additionally, we regulate StyleGAN2 to implement re-naked skin inpainting, conditioned on the target skin shape and spatial-agnostic skin features. Experiments demonstrate that our method has state-of-the-art performance under two challenging scenarios. The code will be available at https://github.com/NerdFNY/PGVTON.


翻译:虚拟试穿是一种具有高商业价值的计算机视觉主题,可以在人体图像上实现衣服的视觉穿着效果。以往的研究在一个阶段进行了形状和内容推断,采用了单尺度变形机制和相对不成熟的内容推断机制。这些方法在具有挑战性的试穿场景下会导致衣服变形和皮肤保留方面的结果不够优秀。为了解决这些限制,我们提出了一种新的基于图像的虚拟试穿方法,采用了渐进推理范式(PGVTON),利用自顶向下的推理管道和普通的衣服试穿策略。具体而言,我们通过解离语义类别并引入一致性,提出了稳健的试穿解析推理方法。利用试穿分析作为形状指导,我们通过扭曲映射合成实现了衣服的试穿。为了方便地适应各种试穿场景,我们采用覆盖更多和选择一个的扭曲策略,并明确区分任务基于对齐。此外,我们用皮肤形状和空间不可知的皮肤特征为条件,调整StyleGAN2实现了裸露皮肤修补。实验表明,我们的方法在两种具有挑战性的情况下具有最先进的性能。代码可在 https://github.com/NerdFNY/PGVTON 上获得。

0
下载
关闭预览

相关内容

Pacific Graphics是亚洲图形协会的旗舰会议。作为一个非常成功的会议系列,太平洋图形公司为太平洋沿岸以及世界各地的研究人员,开发人员,从业人员提供了一个高级论坛,以介绍和讨论计算机图形学及相关领域的新问题,解决方案和技术。太平洋图形会议的目的是召集来自各个领域的研究人员,以展示他们的最新成果,开展合作并为研究领域的发展做出贡献。会议将包括定期的论文讨论会,进行中的讨论会,教程以及由与计算机图形学和交互系统相关的所有领域的国际知名演讲者的演讲。 官网地址:http://dblp.uni-trier.de/db/conf/pg/index.html
NeurIPS 2021 | 寻MixTraining: 一种全新的物体检测训练范式
专知会员服务
12+阅读 · 2021年12月9日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
代码推荐 | 轻松实现各种图匹配 Graph matching.
图与推荐
3+阅读 · 2022年10月22日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
视频目标检测:Flow-based
极市平台
22+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月30日
Arxiv
14+阅读 · 2021年7月20日
VIP会员
相关VIP内容
NeurIPS 2021 | 寻MixTraining: 一种全新的物体检测训练范式
专知会员服务
12+阅读 · 2021年12月9日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
代码推荐 | 轻松实现各种图匹配 Graph matching.
图与推荐
3+阅读 · 2022年10月22日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
视频目标检测:Flow-based
极市平台
22+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员