This paper presents a novel grid-based NeRF called F2-NeRF (Fast-Free-NeRF) for novel view synthesis, which enables arbitrary input camera trajectories and only costs a few minutes for training. Existing fast grid-based NeRF training frameworks, like Instant-NGP, Plenoxels, DVGO, or TensoRF, are mainly designed for bounded scenes and rely on space warping to handle unbounded scenes. Existing two widely-used space-warping methods are only designed for the forward-facing trajectory or the 360-degree object-centric trajectory but cannot process arbitrary trajectories. In this paper, we delve deep into the mechanism of space warping to handle unbounded scenes. Based on our analysis, we further propose a novel space-warping method called perspective warping, which allows us to handle arbitrary trajectories in the grid-based NeRF framework. Extensive experiments demonstrate that F2-NeRF is able to use the same perspective warping to render high-quality images on two standard datasets and a new free trajectory dataset collected by us. Project page: https://totoro97.github.io/projects/f2-nerf.
翻译:本文提出了一种新颖的基于网格的 NeRF(F2-NeRF),用于新视角合成,可实现任意的输入相机轨迹,训练仅需要几分钟。现有的快速基于网格的 NeRF 训练框架,如 Instant-NGP、Plenoxels、DVGO 或 TensoRF,主要是为有界场景设计的,并且依靠空间变形来处理无界场景。现有的两种常用的空间变形方法仅适用于正向轨迹或 360 度物体为中心的轨迹,但不能处理任意轨迹。在本文中,我们深入研究了处理无界场景的空间变形机制。基于我们的分析,我们进一步提出了一种称为透视变形的新型空间变形方法,它允许我们在基于网格的 NeRF 框架中处理任意轨迹。广泛的实验证明,F2-NeRF 能够使用相同的透视变形在两个标准数据集和一个由我们收集的新的自由轨迹数据集上呈现出高质量的图像。项目网站:https://totoro97.github.io/projects/f2-nerf。