Human behavioral monitoring during sleep is essential for various medical applications. Majority of the contactless human pose estimation algorithms are based on RGB modality, causing ineffectiveness in in-bed pose estimation due to occlusions by blankets and varying illumination conditions. Long-wavelength infrared (LWIR) modality based pose estimation algorithms overcome the aforementioned challenges; however, ground truth pose generations by a human annotator under such conditions are not feasible. A feasible solution to address this issue is to transfer the knowledge learned from images with pose labels and no occlusions, and adapt it towards real world conditions (occlusions due to blankets). In this paper, we propose a novel learning strategy comprises of two-fold data augmentation to reduce the cross-domain discrepancy and knowledge distillation to learn the distribution of unlabeled images in real world conditions. Our experiments and analysis show the effectiveness of our approach over multiple standard human pose estimation baselines.
翻译:睡眠期间人类行为监测对于各种医疗应用至关重要。 大部分无接触的人类构成估计算法基于RGB模式,由于毯子隔绝和不同的照明条件,使床内构成的估算无效; 长波红外线(LWIR)模式使估计算法克服了上述挑战; 然而,在这种条件下,由人类旁听员在这种条件下造成几代人的情况并不可行。 解决这一问题的一个可行解决办法是转让从带有姿势标签和无隐蔽的图像中获取的知识,并把它适应现实世界状况(毯子造成的隔离)。 在本文件中,我们提出了一个新的学习战略,包括两重数据增强,以减少跨部差异和知识蒸馏,以学习在现实世界条件下传播未贴标签图像。我们的实验和分析表明,我们的方法在多重标准的人构成估计基线上是有效的。