Fog Computing has emerged as a solution to support the growing demands of real-time Internet of Things (IoT) applications, which require high availability of these distributed services. Intelligent workload distribution algorithms are needed to maximize the utilization of such Fog resources while minimizing the time required to process these workloads. These load balancing algorithms are critical in dynamic environments with heterogeneous resources and workload requirements along with unpredictable traffic demands. In this paper, load balancing is provided using a Reinforcement Learning (RL) algorithm, which optimizes the system performance by minimizing the waiting delay of IoT workloads. Unlike previous studies, the proposed solution does not require load and resource information from Fog nodes, which makes the algorithm dynamically adaptable to possible environment changes over time. This also makes the algorithm aware of the privacy requirements of Fog service providers, who might like to hide such information to prevent competing providers from calculating better pricing strategies. The proposed algorithm is interactively evaluated on a Discrete-event Simulator (DES) to mimic a practical deployment of the solution in real environments. In addition, we evaluate the algorithm's generalization ability on simulations longer than what it was trained on, which, to the best of our knowledge, has never been explored before. The results provided in this paper show how our proposed approach outperforms baseline load balancing methods under different workload generation rates.


翻译:og 计算器已成为一种解决办法,用以支持实时Tings(IoT)应用互联网(IoT)不断增长的需求,这需要大量提供这些分布式服务; 需要智能的工作量分配算法,以便最大限度地利用这种雾源资源,同时尽量减少处理这些工作量所需的时间; 这些负载平衡算法在资源不一、工作量要求不尽相同、交通需求不可预测的动态环境中至关重要; 本文使用强化学习算法提供负载平衡,该算法通过尽量减少IoT工作量的等待延迟,优化系统性能; 与以往的研究不同, 拟议的解决方案不需要来自Fog节点的负荷和资源信息, 使算法能够动态地适应可能发生的环境变化; 这也使算法能够了解Fog服务供应商的隐私要求,他们可能想隐藏这种信息,以防止竞争提供者计算更好的价格战略; 本文对拟议的算法进行了交互评价, 以尽量减少Iocrete-event Simulator(DES)在现实环境中实际部署解决方案。 此外,我们评价了Fogalationalationalizationalizationalization cause cause to the requilight of legradustrangning lester lester lester lester lester lester lest lester lester lester lester legislations

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月14日
Arxiv
19+阅读 · 2022年11月8日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员