Protein complexes are macromolecules essential to the functioning and well-being of all living organisms. As the structure of a protein complex, in particular its region of interaction between multiple protein subunits (i.e., chains), has a notable influence on the biological function of the complex, computational methods that can quickly and effectively be used to refine and assess the quality of a protein complex's 3D structure can directly be used within a drug discovery pipeline to accelerate the development of new therapeutics and improve the efficacy of future vaccines. In this work, we introduce the Equivariant Graph Refiner (EGR), a novel E(3)-equivariant graph neural network (GNN) for multi-task structure refinement and assessment of protein complexes. Our experiments on new, diverse protein complex datasets, all of which we make publicly available in this work, demonstrate the state-of-the-art effectiveness of EGR for atomistic refinement and assessment of protein complexes and outline directions for future work in the field. In doing so, we establish a baseline for future studies in macromolecular refinement and structure analysis.
翻译:蛋白质综合体是对所有活生物体的运作和福祉至关重要的大型分子。由于蛋白质综合体的结构,特别是其多蛋白分体(即链子)之间的相互作用区域,对综合体的生物功能具有显著影响,因此可以迅速有效地使用计算方法改进和评估蛋白综合体的3D结构的质量,这些方法可以在药物发现管道中直接使用,以加速研制新的治疗方法,提高未来疫苗的功效。在这项工作中,我们引入了异变图Refiner(EGR),这是一个新型的E(3)-QQQivariant 图形神经网络(GNNN),用于对蛋白综合体进行多任务结构的完善和评估。我们在这项工作中公开的关于新的、多样化的蛋白综合数据集的实验,展示了EGR对蛋白综合体的原子完善和评估的最新效果,并概述了未来实地工作的方向。我们为此为未来宏观分子完善和结构分析的研究确定了基准。