Peoples' activities and opinions recorded as digital traces online, especially on social media and other web-based platforms, offer increasingly informative pictures of the public. They promise to allow inferences about populations beyond the users of the platforms on which the traces are recorded, representing real potential for the Social Sciences and a complement to survey-based research. But the use of digital traces brings its own complexities and new error sources to the research enterprise. Recently, researchers have begun to discuss the errors that can occur when digital traces are used to learn about humans and social phenomena. This article synthesizes this discussion and proposes a systematic way to categorize potential errors, inspired by the Total Survey Error (TSE) Framework developed for survey methodology. We introduce a conceptual framework to diagnose, understand, and document errors that may occur in studies based on such digital traces. While there are clear parallels to the well-known error sources in the TSE framework, the new "Total Error Framework for Digital Traces of Human Behavior on Online Platforms" (TED-On) identifies several types of error that are specific to the use of digital traces. By providing a standard vocabulary to describe these errors, the proposed framework is intended to advance communication and research concerning the use of digital traces in scientific social research.
翻译:作为在线数字线索记录的人的活动和意见,特别是在社交媒体和其他网络平台上,在网上记录的数字痕迹上,人们的活动和观点提供了越来越多的公众信息图片,他们承诺允许在记录这些痕迹的平台用户之外对人口进行推断,这代表了社会科学的真正潜力,是对调查研究的补充。但数字痕迹的使用给研究企业带来了自己的复杂性和新的错误来源。最近,研究人员开始讨论数字痕迹用于了解人类和社会现象时可能发生的错误。这一文章综合了这一讨论,并提出了一种系统的方法,根据为调查方法开发的总调查错误框架,对潜在错误进行分类。我们引入了一个概念框架,用于诊断、理解和记录根据这些数字痕迹进行的研究可能发生的错误。虽然数字痕迹的使用与TSE框架中众所周知的错误来源有明显的相似之处,但新的“网上平台上人类行为数字痕迹总错误框架”(TED-On) 确定了数种错误,具体针对数字痕迹的使用。通过提供标准词汇来描述这些错误,而拟议的社会研究框架旨在说明这些错误的先进性研究。