Designers of online deliberative platforms aim to counter the degrading quality of online debates and eliminate online discrimination based on class, race or gender. Support technologies such as machine learning and natural language processing open avenues for widening the circle of people involved in deliberation, moving from small groups to ``crowd'' scale. Some design features of large-scale online discussion systems allow larger numbers of people to discuss shared problems, enhance critical thinking, and formulate solutions. However, scaling up deliberation is challenging. We review the transdisciplinary literature on the design of digital mass-deliberation platforms and examine the commonly featured design aspects (e.g., argumentation support, automated facilitation, and gamification). We find that the literature is heavily focused on developing technical fixes for scaling up deliberation, with a heavy western influence on design and test users skew young and highly educated. Contrastingly, there is a distinct lack of discussion on the nature of the design process, the inclusion of stakeholders and issues relating to inclusion, which may unwittingly perpetuate bias. Another tendency of deliberation platforms is to nudge participants to desired forms of argumentation, and simplifying definitions of good and bad arguments to fit algorithmic purposes. Few studies bridge disciplines between deliberative theory, design and engineering. As a result, scaling up deliberation will likely advance in separate systemic siloes. We make design and process recommendations to correct this course and suggest avenues for future research.


翻译:在线审议平台的设计设计者旨在抵制在线辩论的有辱人格质量,消除基于阶级、种族或性别的在线歧视。支持诸如机器学习和自然语言处理等技术,为扩大参与审议的人的圈子开辟开放的渠道,从小群体转向“拥挤”的规模。大规模在线讨论系统的一些设计特征使得更多的人能够讨论共同的问题,强化批判性思维,并制定解决方案。然而,扩大审议是具有挑战性。我们审查关于数字大规模审议平台设计的跨学科文献,并审查通常突出的设计方面(例如辩论支持、自动化便利和拼写)。我们发现,文献主要侧重于制定技术修正,以扩大审议范围,对设计和测试用户的年轻和受过高度教育的人产生巨大的西方影响。相反,对于设计过程的性质、纳入利益攸关方和与包容有关的问题显然缺乏讨论,这可能无意地延续偏见。审议平台的另一个倾向是将参与者推向理想的争论形式,并简化对良好和坏辩论的定义。我们发现,在设计系统化的流程和升级过程中,我们很少研究能够提出一个符合系统化的流程。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年9月27日
VIP会员
相关VIP内容
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员