Computer graphics seeks to deliver compelling images, generated within a computing budget, targeted at a specific display device, and ultimately viewed by an individual user. The foveated nature of human vision offers an opportunity to efficiently allocate computation and compression to appropriate areas of the viewer's visual field, especially with the rise of high resolution and wide field-of-view display devices. However, while the ongoing study of foveal vision is advanced, much less is known about how humans process imagery in the periphery of their vision -- which comprises, at any given moment, the vast majority of the pixels in the image. We advance computational models for peripheral vision aimed toward their eventual use in computer graphics. In particular, we present a dataflow computational model of peripheral encoding that is more efficient than prior pooling - based methods and more compact than contrast sensitivity-based methods. Further, we account for the explicit encoding of "end stopped" features in the image, which was missing from previous methods. Finally, we evaluate our model in the context of perception of textures in the periphery. Our improved peripheral encoding may simplify development and testing of more sophisticated, complete models in more robust and realistic settings relevant to computer graphics.


翻译:计算机图形试图提供在计算预算范围内产生的、针对特定显示装置并最终由个人用户观看的令人信服的图像。人类视觉的先入为主的性质提供了一个机会,可以有效地将计算和压缩到观众视觉字段的适当区域,特别是高分辨率和广视场显示装置的上升。然而,虽然正在对叶形视觉进行的研究很先进,但对于人类如何在其视觉的边缘处理图像却知之甚少 -- -- 它在任何特定时刻包括图像中的绝大多数像素。我们推进外围视觉的计算模型,目的是最终在计算机图形中使用这些图像。特别是,我们展示了比先前的集成-基于方法的数据流计算模型效率更高,比以对比敏感度为基础的方法更为紧凑。此外,我们说明了图像中“停止”特征的明确编码,而以前的方法却忽略了这一点。最后,我们根据对周边纹理的感知觉来评估我们的模型。我们改进的周边编码可以简化开发和测试更精密、更完整的模型,在更坚固和更现实的环境下与计算机图形相关的环境中。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
19+阅读 · 2020年12月23日
Arxiv
9+阅读 · 2018年3月10日
VIP会员
相关VIP内容
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员