We provide methods for in-database support of decision making under uncertainty. Many important decision problems correspond to selecting a package (bag of tuples in a relational database) that jointly satisfy a set of constraints while minimizing some overall cost function; in most real-world problems, the data is uncertain. We provide methods for specifying -- via a SQL extension -- and processing stochastic package queries (SPQs), in order to solve optimization problems over uncertain data, right where the data resides. Prior work in stochastic programming uses Monte Carlo methods where the original stochastic optimization problem is approximated by a large deterministic optimization problem that incorporates many scenarios, i.e., sample realizations of the uncertain data values. For large database tables, however, a huge number of scenarios is required, leading to poor performance and, often, failure of the solver software. We therefore provide a novel SummarySearch algorithm that, instead of trying to solve a large deterministic problem, seamlessly approximates it via a sequence of smaller problems defined over carefully crafted summaries of the scenarios that accelerate convergence to a feasible and near-optimal solution. Experimental results on our prototype system show that SummarySearch can be orders of magnitude faster than prior methods at finding feasible and high-quality packages.


翻译:我们为在不确定情况下决策提供数据库内支持的方法。许多重要的决策问题与选择一个包件(关系数据库中的一袋小便)相对应,该包件可以共同满足一系列限制,同时最大限度地降低整体成本功能;在大多数现实世界的问题中,数据是不确定的。我们通过SQL扩展提供具体的方法,并处理随机软件查询(SPQs),以解决不确定数据方面的优化问题,而数据所在位置是数据所在的。以前在随机程序设计方法中使用的方法,最初的随机优化问题被包含许多设想的大规模确定性优化问题所近似,即对不确定数据值的抽样实现。但是,对于大型数据库表格来说,需要大量设想,导致性能差,而且往往导致求解软件的故障。因此,我们提供了一种新的“GistrictSearch”算法,它不是试图解决一个大的确定性能问题,而是通过一系列小问题来完美地接近它,这些问题是精心界定的、对各种设想的情景进行精细的总结,从而加速接近于可行和近于最理想的数据值的实现。对于前系统来说,实验性能更快地显示我们原型系统的结果。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
17+阅读 · 2020年9月6日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
60+阅读 · 2019年12月21日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Learning to Importance Sample in Primary Sample Space
Arxiv
6+阅读 · 2018年4月21日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
6+阅读 · 2017年7月17日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
17+阅读 · 2020年9月6日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
60+阅读 · 2019年12月21日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员