When reasoning about strategic behavior in a machine learning context it is tempting to combine standard microfoundations of rational agents with the statistical decision theory underlying classification. In this work, we argue that a direct combination of these standard ingredients leads to brittle solution concepts of limited descriptive and prescriptive value. First, we show that rational agents with perfect information produce discontinuities in the aggregate response to a decision rule that we often do not observe empirically. Second, when any positive fraction of agents is not perfectly strategic, desirable stable points -- where the classifier is optimal for the data it entails -- cease to exist. Third, optimal decision rules under standard microfoundations maximize a measure of negative externality known as social burden within a broad class of possible assumptions about agent behavior. Recognizing these limitations we explore alternatives to standard microfoundations for binary classification. We start by describing a set of desiderata that help navigate the space of possible assumptions about how agents respond to a decision rule. In particular, we analyze a natural constraint on feature manipulations, and discuss properties that are sufficient to guarantee the robust existence of stable points. Building on these insights, we then propose the noisy response model. Inspired by smoothed analysis and empirical observations, noisy response incorporates imperfection in the agent responses, which we show mitigates the limitations of standard microfoundations. Our model retains analytical tractability, leads to more robust insights about stable points, and imposes a lower social burden at optimality.
翻译:当在机器学习背景下对战略行为进行推理时,人们会把理性剂的标准微积分与统计决策理论的分类理论结合起来。在这项工作中,我们争辩说,直接结合这些标准成份会导致有限的描述性和规范价值的不完善解决方案概念。首先,我们显示,完全信息合理的理性剂在对一个我们通常不以经验方式遵守的决定规则的总体反应中会产生不连续性。第二,当任何积极物剂的一部分不是完全战略性的、理想的稳定点 -- -- 即分类者最适合它所需的数据的地方 -- -- 不再存在。第三,标准微积分下的最佳决策规则在对代理人行为可能进行的广泛假设中最大限度地采用被称为社会负担的负面外部因素。认识到这些局限性,我们探索了标准微积分的替代方法,用于二进式分类。我们首先描述了一套贬低的偏差因素,有助于了解代理人如何对决策规则作出反应的可能假设的空间。特别是,我们分析了特征操纵的自然制约,并讨论了足以保证稳定点的特性存在 -- -- 不再存在。然后,我们根据这些洞察力的模型,我们提出了一种紧张的反应模式,然后建议,在对精确的外部反应模型进行我们的精确性分析,以显示我们如何精确的精确的分析,我们如何分析,从而显示我们的精确的精确的判断。