The massive spread of hate speech, hateful content targeted at specific subpopulations, is a problem of critical social importance. Automated methods of hate speech detection typically employ state-of-the-art deep learning (DL)-based text classifiers-large pretrained neural language models of over 100 million parameters, adapting these models to the task of hate speech detection using relevant labeled datasets. Unfortunately, there are only a few public labeled datasets of limited size that are available for this purpose. We make several contributions with high potential for advancing this state of affairs. We present HyperNetworks for hate speech detection, a special class of DL networks whose weights are regulated by a small-scale auxiliary network. These architectures operate at character-level, as opposed to word or subword-level, and are several orders of magnitude smaller compared to the popular DL classifiers. We further show that training hate detection classifiers using additional large amounts of automatically generated examples is beneficial in general, yet this practice especially boosts the performance of the proposed HyperNetworks. We report the results of extensive experiments, assessing the performance of multiple neural architectures on hate detection using five public datasets. The assessed methods include the pretrained language models of BERT, RoBERTa, ALBERT, MobileBERT and CharBERT, a variant of BERT that incorporates character alongside subword embeddings. In addition to the traditional setup of within-dataset evaluation, we perform cross-dataset evaluation experiments, testing the generalization of the various models in conditions of data shift. Our results show that the proposed HyperNetworks achieve performance that is competitive, and better in some cases, than these pretrained language models, while being smaller by orders of magnitude.


翻译:仇恨言论的大规模传播、针对特定亚群群的仇恨内容的大规模传播,是一个至关重要的社会问题。仇恨言论的自动检测方法通常采用最先进的深层次学习(DL)基于文字的文本分类(DL)特殊类别,其重量由小规模辅助网络调节。这些结构在字符级别运作,而不是文字或子字级别,与流行的DL分类者相比,规模小于几级。我们进一步表明,使用更多自动生成的实例进行仇恨检测的培训分类在总体上是有益的,但这种做法特别有助于推进这一状态。我们介绍了超链接检测的超链接,这是一个特殊类型的DL网络网络网络,其重量由小规模辅助网络管理。这些结构在字符级别运行,而不是字或子字级级别,这些模型与流行的DL分类者相比,规模较小。我们进一步表明,使用更多自动生成的实例进行培训的仇恨检测分类在总体上是有用的,但这种做法尤其能提高拟议超网络系统的绩效。我们报告了广泛实验的结果,评估了多种神经模型的性能性能由小规模的TLLLEO的常规模型进行,在测试中进行,在RERRER数据库中采用五种模式进行。

0
下载
关闭预览

相关内容

专知会员服务
59+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
20+阅读 · 2020年6月8日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关VIP内容
专知会员服务
59+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员