The policy gradient theorem states that the policy should only be updated in states that are visited by the current policy, which leads to insufficient planning in the off-policy states, and thus to convergence to suboptimal policies. We tackle this planning issue by extending the policy gradient theory to policy updates with respect to any state density. Under these generalized policy updates, we show convergence to optimality under a necessary and sufficient condition on the updates' state densities, and thereby solve the aforementioned planning issue. We also prove asymptotic convergence rates that significantly improve those in the policy gradient literature. To implement the principles prescribed by our theory, we propose an agent, Dr Jekyll & Mr Hyde (JH), with a double personality: Dr Jekyll purely exploits while Mr Hyde purely explores. JH's independent policies allow to record two separate replay buffers: one on-policy (Dr Jekyll's) and one off-policy (Mr Hyde's), and therefore to update JH's models with a mixture of on-policy and off-policy updates. More than an algorithm, JH defines principles for actor-critic algorithms to satisfy the requirements we identify in our analysis. We extensively test on finite MDPs where JH demonstrates a superior ability to recover from converging to a suboptimal policy without impairing its speed of convergence. We also implement a deep version of the algorithm and test it on a simple problem where it shows promising results.


翻译:政策梯度理论指出,政策应当只在现行政策所考察的国家更新政策,从而导致非政策国家规划不足,从而导致与次最佳政策趋同。我们通过将政策梯度理论扩展至与任何州密度有关的政策更新,将政策梯度理论扩大到与任何州密度有关的政策更新来应对这一规划问题。根据这些普遍的政策更新,我们显示在更新的州密度必要和充分的条件下,在最佳条件下实现政策趋同,从而解决上述规划问题。我们还证明,在政策梯度文献中,政策趋同率的简单化速度大大改进了政策梯度文献中的数据。为了执行我们理论规定的原则,我们建议一个具有双重人格的代理机构,Jekyll博士和Hyde先生(JH)博士(JH)博士和Hyde先生(JH)博士(JH)将政策梯度理论纯粹加以利用,而Hyde先生则纯粹探索。根据这些普遍的政策更新,JHKL的测试能力分析可以记录两个单独的缓冲:一个是政策(Dr Jkykilling),一个是政策(D)和JDL)下的最新政策更新。

0
下载
关闭预览

相关内容

磁流变(Magnetorheological,简称MR)材料是一种流变性能可由磁场控制的新型智能材料。由于其响应快(ms量级)、可逆性好(撤去磁场后,又恢复初始状态)、以及通过调节磁场大小来控制材料的力学性能连续变化,因而近年来在汽车、建筑、振动控制等领域得到广泛应用。
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
6+阅读 · 2021年6月24日
Paraphrase Generation with Deep Reinforcement Learning
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员