Representation learning lies at the heart of the empirical success of deep learning for dealing with the curse of dimensionality. However, the power of representation learning has not been fully exploited yet in reinforcement learning (RL), due to i), the trade-off between expressiveness and tractability; and ii), the coupling between exploration and representation learning. In this paper, we first reveal the fact that under some noise assumption in the stochastic control model, we can obtain the linear spectral feature of its corresponding Markov transition operator in closed-form for free. Based on this observation, we propose Spectral Dynamics Embedding (SPEDE), which breaks the trade-off and completes optimistic exploration for representation learning by exploiting the structure of the noise. We provide rigorous theoretical analysis of SPEDE, and demonstrate the practical superior performance over the existing state-of-the-art empirical algorithms on several benchmarks.
翻译:代表制学习是深思熟虑处理维度诅咒的经验成功的核心,然而,代表制学习的力量尚未在强化学习(RL)中得到充分利用(RL),原因是(i),表达性和可移动性之间的权衡;和(ii),探索和代表制学习的结合。在本文中,我们首先揭示了一个事实,即根据随机控制模型中的一些噪音假设,我们可以免费获得相应的Markov过渡运营商的线性光谱特征。基于这一观察,我们提议光谱动态嵌入(SPEDE),通过利用噪音的结构,打破交易,完成对代表制学习的乐观探索。我们对SPEDE进行严格的理论分析,并表明在几个基准上比现有最新经验算法的实际优于现有水平。