In this note we extend kernel function approximation results for neural networks with Gaussian-distributed weights to single-layer networks initialized using Haar-distributed random orthogonal matrices (with possible rescaling). This is accomplished using recent results from random matrix theory.
翻译:在本说明中,我们将神经网络的内核功能近似值结果扩大至使用Haar分布随机正向矩阵初始化的单层网络。这是使用随机矩阵理论的最新结果实现的。