We give an algorithm, that given an $n$-vertex graph $G$ and an integer $k$, in time $2^{O(k)} n$ either outputs a tree decomposition of $G$ of width at most $2k + 1$ or determines that the treewidth of $G$ is larger than $k$. This is the first 2-approximation algorithm for treewidth that is faster than the known exact algorithms. In particular, our algorithm improves upon both the previous best approximation ratio of 5 in time $2^{O(k)} n$ and the previous best approximation ratio of 3 in time $2^{O(k)} n^{O(1)}$, both given by Bodlaender et al. [FOCS 2013, SICOMP 2016]. Our algorithm is based on a local improvement method adapted from a proof of Bellenbaum and Diestel [Comb. Probab. Comput. 2002].
翻译:我们给出了一个算法, 给出了一个以美元为顶价的G$和整数的K$, 时间为2 ⁇ O(k)}n 美元, 或者输出宽度以2k+1美元为单位的树分解, 或者确定$G$的树宽大于1美元。 这是第一个比已知精确算法更快的树宽的2比2比2的2比2。 特别是,我们的算法改进了以前5比5的最佳近似率乘5比2°O(k)n 美元和3比3的最佳近似率, Bodlaender et al. [FOCS 2013, SISCOMP 2016]。 我们的算法基于从Bellenbaum 和 Diestel 的证明改编的当地改进方法。 [Comb. Probab. Comput. 2002]。