We present angle-uniform parallel coordinates, a data-independent technique that deforms the image plane of parallel coordinates so that the angles of linear relationships between two variables are linearly mapped along the horizontal axis of the parallel coordinates plot. Despite being a common method for visualizing multidimensional data, parallel coordinates are ineffective for revealing positive correlations since the associated parallel coordinates points of such structures may be located at infinity in the image plane and the asymmetric encoding of negative and positive correlations may lead to unreliable estimations. To address this issue, we introduce a transformation that bounds all points horizontally using an angle-uniform mapping and shrinks them vertically in a structure-preserving fashion; polygonal lines become smooth curves and symmetric representation of data correlations is achieved. We further propose a combined subsampling and density visualization approach to reduce visual clutter caused by overdrawing. Our method enables accurate visual pattern interpretation of data correlations, and its data-independent nature makes it applicable to all multidimensional datasets. The usefulness of our method is demonstrated using examples of synthetic and real-world datasets.
翻译:我们展示了角度- 统一的平行坐标, 这是一种数据独立的技术, 使平行坐标的图像平面发生畸形, 使两个变量之间的线性关系角度沿着平行坐标图的横向轴线性地绘制线性图。 尽管平行坐标是可视化多维数据的一个常见方法, 但对于揭示正相关关系来说是无效的, 因为这些结构的相关平行坐标点可能位于图像平面的无限度, 而正反正对应的不对称编码可能导致不可靠的估计。 为了解决这个问题, 我们引入了一种转换, 将所有点横向地捆绑在一起, 使用角度- 单形绘图, 并用结构保持的方式垂直缩小这些点; 多边形线成为光滑曲线, 并实现数据相关性的对称性表示。 我们进一步提议了一种子标和密度的组合性可视化方法, 以减少由倾斜斜面造成的视觉断层。 我们的方法可以精确地解释数据相关性, 其数据依赖性使它适用于所有多维数据集。 我们的方法的有用性是通过合成和真实世界数据集来证明。