In this paper, we develop a method which we call OnlineGCP for computing the Generalized Canonical Polyadic (GCP) tensor decomposition of streaming data. GCP differs from traditional canonical polyadic (CP) tensor decompositions as it allows for arbitrary objective functions which the CP model attempts to minimize. This approach can provide better fits and more interpretable models when the observed tensor data is strongly non-Gaussian. In the streaming case, tensor data is gradually observed over time and the algorithm must incrementally update a GCP factorization with limited access to prior data. In this work, we extend the GCP formalism to the streaming context by deriving a GCP optimization problem to be solved as new tensor data is observed, formulate a tunable history term to balance reconstruction of recently observed data with data observed in the past, develop a scalable solution strategy based on segregated solves using stochastic gradient descent methods, describe a software implementation that provides performance and portability to contemporary CPU and GPU architectures and integrates with Matlab for enhanced useability, and demonstrate the utility and performance of the approach and software on several synthetic and real tensor data sets.


翻译:在本文中,我们开发了一种方法,我们称之为在线GCP,用于计算流数据流的通用卡纳尼科聚合物(GCP)变分解。GCP不同于传统的卡纳尼科多元虫(CP)变分解法,因为它允许任意的客观功能,而CP模型试图将这种功能减少到最低程度。当所观测到的抗拉数据明显不是Gausian数据时,这一方法可以提供更适合和更可解释的模型。在流学中,分母数据逐渐被观测,而算法必须逐步更新GCP因子化,限制获得先前数据的机会。在这项工作中,我们将GCP形式化扩大到流环境,在观测到新的加纳多数据时,得出GCP优化问题,从而解决GCP的最优化问题,制定一个可累积的历史术语,以平衡最近观察到的数据的重建与过去观察到的数据之间的平衡,制定基于使用沙沙梯梯梯梯梯梯梯梯梯梯梯梯梯梯梯梯梯梯梯底分解的可扩展的解决方案,描述一种软件实施,为当代CPU和GPU结构提供性及可移动性能和可移动性,并与Matlab集集集集集相结合,并综合利用性方法,并展示各种高能软件。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
64+阅读 · 2021年8月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
61+阅读 · 2019年12月21日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】基于TVM工具链的深度学习编译器 NNVM compiler发布
机器学习研究会
5+阅读 · 2017年10月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Using Scene Graph Context to Improve Image Generation
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】基于TVM工具链的深度学习编译器 NNVM compiler发布
机器学习研究会
5+阅读 · 2017年10月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员