Constructing Reed--Solomon (RS) codes that can correct insertions and deletions (insdel errors) has been considered in numerous recent works. For the special case of two-dimensional RS-codes, it is known [CST23] that an $[n,2]_q$ RS-code that can correct from $n-3$ insdel errors satisfies that $q=\Omega(n^3)$. On the other hand, there are several known constructions of $[n,2]_q$ RS-codes that can correct from $n-3$ insdel errors, where the smallest field size is $q=O(n^4)$. In this short paper, we construct $[n,2]_q$ Reed--Solomon codes that can correct $n-3$ insdel errors with $q=O(n^3)$, thereby resolving the minimum field size needed for such codes.
翻译:暂无翻译