Occluded person re-identification (Re-ID), the task of searching for the same person's images in occluded environments, has attracted lots of attention in the past decades. Recent approaches concentrate on improving performance on occluded data by data/feature augmentation or using extra models to predict occlusions. However, they ignore the imbalance problem in the test set and not fully utilize the information from the training data. To alleviate the above problems, we propose a simple but effective method with Parallel Augmentation and Dual Enhancement (PADE) that is robust on both occluded and non-occluded data, and does not require any auxiliary clues. First, we design a parallel augmentation mechanism (PAM) for occluded Re-ID to generate more suitable occluded data to mitigate the negative effects of unbalanced data. Second, we propose the dual enhancement strategy (DES)for global and local features to promote the context information and details. Experimental results on widely used occluded datasets (OccludedDuke, Partial-REID, and Occluded-ReID) and non-occluded datasets (Market-1501 and DukeMTMC-reID) validate the effectiveness of our method. The code will be available soon.
翻译:在过去几十年里,在隐蔽的环境中寻找同一个人图像的任务,即重新身份(Re-ID),在过去几十年中引起了许多注意。最近的办法集中于通过数据/地物增强或使用额外模型预测隔绝性,提高隐蔽性数据的性能;然而,它们忽视了测试组中的不平衡问题,没有充分利用培训数据中的信息。为了缓解上述问题,我们提出了一个简单而有效的方法,即平行增强和双重增强性能,该方法对隐蔽性和非隐蔽性数据都十分可靠,不需要任何辅助线索。首先,我们为隐蔽性重新开发设计一个平行增强机制(PAM),用于生成更合适的隐蔽性数据,以减轻数据不平衡性的负面影响。第二,我们提议为全球和地方特征制定双重强化战略,以促进背景信息和细节。关于广泛使用的隐蔽性数据集(Oclomited Duke, 部分REID, 和Oclomel-ReID)的实验结果。我们现有的DUM-M(M) 和未加密数据校准性校准性(MM) 将很快被我们现有的D-MARmaz-M) 和不加密数据校验准。