Accurate object pose estimation using multi-modal perception such as visual and tactile sensing have been used for autonomous robotic manipulators in literature. Due to variation in density of visual and tactile data, a novel probabilistic Bayesian filter-based approach termed translation-invariant Quaternion filter (TIQF) is proposed for pose estimation using point cloud registration. Active tactile data collection is preferred by reasoning over multiple potential actions for maximal expected information gain as tactile data collection is time consuming. In this paper, we empirically evaluate various information gain criteria for action selection in the context of object pose estimation. We demonstrate the adaptability and effectiveness of our proposed TIQF pose estimation approach with various information gain criteria. We find similar performance in terms of pose accuracy with sparse measurements (<15 points) across all the selected criteria. Furthermore, we explore the use of uncommon information theoretic criteria in the robotics domain for action selection.
翻译:由于视觉和触觉数据密度的变化,我们建议使用点云登记法(TIQF)来估计精确的物体。主动的触觉数据收集更可取,其方法是推理而不是采取多种潜在行动,以取得最大预期的信息,因为收集触觉数据耗费时间。在本文中,我们实证地评估了在物体构成估计的情况下选择行动的各种信息获取标准。我们用各种信息获取标准来显示我们拟议的TIQF的估算方法的适应性和有效性。我们发现,在所有选定标准中,以稀疏测量值(<15点)来显示准确性,我们发现相似的性能。此外,我们探索了在机器人领域使用不常见的信息神学标准来选择行动。