In Cooperative Multi-Agent Reinforcement Learning (MARL) and under the setting of Centralized Training with Decentralized Execution (CTDE), agents observe and interact with their environment locally and independently. With local observation and random sampling, the randomness in rewards and observations leads to randomness in long-term returns. Existing methods such as Value Decomposition Network (VDN) and QMIX estimate the value of long-term returns as a scalar that does not contain the information of randomness. Our proposed model QR-MIX introduces quantile regression, modeling joint state-action values as a distribution, combining QMIX with Implicit Quantile Network (IQN). However, the monotonicity in QMIX limits the expression of joint state-action value distribution and may lead to incorrect estimation results in non-monotonic cases. Therefore, we proposed a flexible loss function to approximate the monotonicity found in QMIX. Our model is not only more tolerant of the randomness of returns, but also more tolerant of the randomness of monotonic constraints. The experimental results demonstrate that QR-MIX outperforms the previous state-of-the-art method QMIX in the StarCraft Multi-Agent Challenge (SMAC) environment.


翻译:在合作性多点强化学习(MARL)中和在集中培训与分散执行(CTDE)的设置下,代理商在当地和独立地观察并与其环境互动。通过当地观察和随机抽样,奖励和观察随机性导致长期回报随机性。现有的方法,如价值分解网络(VDN)和 QMIX 估计长期回报值是一个不包含随机性信息的标度值。我们提议的模型 QR- MIX 引入了量化回归,将联合州行动值作为分布模型,将 QMIX 与隐性量子网络(IQN)相结合。然而, QMIX 的单一性限制了联合州-行动值分布的表达方式,可能导致不正确估计非分子案件的结果。因此,我们提议了一种灵活的损失功能,以近似QMIX 中发现的单项性。我们的模型不仅更容误,而且更容容性也更容性地反映了单项制约的随机性,同时将QM-QIX 与隐性网络(IN) 的随机性。实验结果显示,前一个挑战-C-C-Star-C-C-C-C-Star-C-SDA 格式环境。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2020年11月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2018年12月26日
VIP会员
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员